domingo, 13 de enero de 2013

TÉCNICAS DE SOLUCIÓN DE ECUACIONES DE PRIMER GRADO CON UNA VARIABLE


Como procedimiento general para resolver ecuaciones enteras de primer grado se deben seguir los siguientes pasos:
1.  Se reducen los términos semejantes, cuando es posible.
2.  Se hace la transposición de términos (aplicando inverso aditivo o multiplicativo), los que contengan la incógnita se ubican en el miembro izquierdo, y los que carezcan de ella en el derecho.
3.  Se reducen términos semejantes, hasta donde es posible.
4.  Se despeja la incógnita, dividiendo ambos miembros de la ecuación por el coeficiente de la incógnita (inverso multiplicativo), y se simplifica.
Resolución de ecuaciones de primer grado con una incógnita
Para resolver ecuaciones de primer grado con una incógnita, aplicamos el criterio del operador inverso (inverso aditivo o inverso multiplicativo), como veremos en el siguiente ejemplo:
Resolver la ecuación :   2x – 3 = 53
Debemos tener las letras a un lado y los números al otro lado de la igualdad (=), entonces para llevar el –3 al otro lado de la igualdad, le aplicamos el inverso aditivo (el inverso aditivo de –3 es +3, porque la operación inversa de la resta es la suma).
Entonces hacemos:
   2x – 3 + 3 = 53 + 3
En el primer miembro –3 se elimina con +3 y tendremos:
    2x = 53 + 3
    2x = 56
Ahora tenemos el número 2 que está multiplicando a la variable o incógnita x, entonces lo pasaremos al otro lado de la igualdad dividiendo. Para hacerlo, aplicamos el inverso multiplicativo de 2 (que es ½) a ambos lados de la ecuación:
   2x • ½   =  56 • ½
Simplificamos y tendremos ahora:
   x = 56 / 2
   x = 28

No hay comentarios:

Publicar un comentario